Design and Cônstruction of the Olentangy Trail - Arena District Connector Briáge

Presenters:
John Shanks, PE Travis Butz, PE

BURGESS \& NIPLE

- Inclined Vierendeel trusses using round HSS sections
- Floorbeams are I-beams, field bolted moment connections to trusses
- Conventional composite concrete deck on SIP forms, span between floorbeams
- Variable deck haunch included to control the deck profile
- Deck is flat in cross section, positive drainage achieved by longitudinal grade

- Vierendeel truss is a moment frame with fully welded connections
- End panels are filled with welded web plates to help resolve the forces at the ends of the bridge
- Trusses were designed to come out in 3 pieces, connected by CJP field welds
- Ohio Structures constructed the truss lines full length in the shop, eliminated filed splices
- Midas Civil used to calculate member forces
- Beam elements for truss members \& floorbeams, shell elements for deck and web plates
- Multi-stage analysis examined deck construction, wind before \& after the deck is placed

- Upper chord is braced by the bending stiffness of the truss web members
- Linear \& nonlinear buckling analysis for construction and final conditions
- Considered the combined effects of wind, vertical loads

- Detailed analysis of the end panel to examine crushing / local buckling of the tube sections
- Tube members and plates modeled using shell elements
- Nonlinear analysis, verified factored stresses remained below yield limits

- Tubular truss members are generally controlled by the design of the connections
- Not in AASHTO
- Covered in Chapter K of AISC Specification for Structural Steel Buildings

(a) Chord wall plastification.

TABLE K4.1
Available Strengths of Round HSS-to-HSS Moment Connections

| Connection Type | Connection Available Flexural Strength | |
| :---: | :---: | :---: | :---: |
| Branch(es) Under In-Plane Bending | | |
| T -, Y - and Cross-Connections | Limit State: Chord Plastification | |

- Welding of tubular members is not covered in AWS D1.2 (Bridge Welding Code)
- Requirements are in chapter 9 of AWS D1.1 (Structural Welding Code)
- Figure 9.11 deals with PJP welds of tubular members

NOTES:

1. PARTIAL PENETRATION GROOVE WELDS BETWEEN TUBULAR MEMBERS SHALL BE PERFORMED ACCORDING TO AWS DI.I (2015) FIGURE 9.II. SEE GENERAL NOTES FOR ADDITIONAL WELDING AND TESTING REQUIREMENTS.

TRANSITION B

heel

SKETCH FOR ANGULAR SKETCH FOR $150^{\circ} \geq \Psi \geq 30^{\circ}$
$150^{\circ} \geq \Psi \geq 30^{\circ}$
$90^{\circ}>\phi \geq 30^{\circ}$

Figure 9.11 (Continued)—Prequalified Joint Details for PJP T-, Y-, and K-Tubular Connections (see 9.10.1)

- Trusses would be assembled on the ground, lifted into place as a unit
- Temporary lateral bracing is required for the lift, to carry wind loads until the deck is placed
- Contractor had the option to place the deck forms before erecting the truss

Confluence Park now Astor Park

Questions?

Bridge
\$1.76 M
Lighting
\$0.26 M
Total Project $\$ 2.63 \mathrm{M}$
BURGESS \& NIPLE

